Welcome to Hong Kong Saul Electrlc Llmlted
Call us 24/7+86 15359273796
Call us 24/7+86 15359273796

GE MPU55 high-performance

In stock

The GE MPU55 is a high-performance microprocessor unit primarily designed for critical applications in aviation and industrial automation.

 

 

GE MPU55

The GE MPU55 is a high-performance microprocessor unit primarily designed for critical applications in aviation and industrial automation. Below is a detailed technical specification sheet based on the available information:

📊 1. Overview

  • Model: GE MPU55 (also referenced as part number 369B1860G0030) .
  • Manufacturer: GE Aviation (part of the GE 90 series) .
  • Description: An industrial-grade microprocessor unit known for high reliability, long life, and robust performance in demanding environments .

⚙️ 2. Key Technical Specifications

Here’s a summarized table of the core specifications:

Parameter Specification
Processor Architecture PowerPC 6278 or PowerPC 604e
Clock Speed 1.5 GHz
RAM 256 MB or 128 MB
Flash Memory 512 MB
Storage 4 GB
Operating Temperature -40°C to 70°C or -55°C to 75°C
Storage Temperature -55°C to 85°C
Relative Humidity 5% to 95% (non-condensing)
Protection Rating IP67 (dust and water resistant)
Dimensions 150 mm x 100 mm x 50 mm or 100 mm x 100 mm x 50 mm
Weight ~1 kg or 0.5 kg
I/O Points 50
Work Voltage 650V
Output Frequency 2645A
Processing Speed 150/60Hz
Program Capacity 50000
Data Capacity 100

🔧 3. Design and Features

  • Modular Design: Facilitates easy maintenance and replacement, reducing downtime .
  • Communication Interfaces: Supports multiple protocols including RS-232, RS-485, and Ethernet .
  • High Reliability: Built with advanced materials and technology for stability in harsh conditions .
  • Self-Diagnostic: Includes features for easier maintenance and troubleshooting .

🚀 4. Applications

  • Aviation: Used in GE 90 series aircraft engine control systems .
  • Industrial Automation: Employed in PLC modules, industrial network switches, and automated systems .
  • Military and Defense: Applied in military aircraft, helicopters, and drones
Main Brand:

ABB      Allen-Bradley      Alstom      Bently         Emerson     Foxboro

GE       MOOG       Schneider       Woodward       HIMA        Honeywell  

ABB 5SHY series hot selling//large inventory//brand new//affordable price

First hand source, affordable price. Spot inventory!

•Shipping Port: Xiamen

•Ship to you via Fedex/DHL/TNT/UPS/EMS

•Package: Original packing with cartons

More brands//More models//Hot selling inventory//Welcome to inquire

ABB GE Fanuc Triconex Bently
 3BHB004661R0101 IC693CHS397 DS200SLCCG1AEE 8851-LC-MT
 3BHB000652R0101 IC693MDL753 DS200SLCCG1ACC 8851-LC-MT
 3BHB000272R0101 IC693ALG442 DS200SIOCG1A 8811-IO-DC-01
 3BHE006805R0001 IC693BEM321 DS200SIOBH1ABA 8810-HI-TX-01
 3BHE004468R0021 IC693MDL752 DS200SHVMG1AFE 8750-CA-NS
 3BHE010751R0101 IC693MDL646 DS200SHVMG1AED 8709-CA-08
 3BHE009017R0101 IC693MDL741C DS200SHVMG1ACC 8611-FT-FU
 HIEE300936R0101 IC693ACC310 DS200SHVIG1BGD 8607ERL

What Is a Distributed Control System (DCS)? A Complete Guide

A Distributed Control System (DCS) is a sophisticated automated control system that uses a network of interconnected controllers, sensors, and computers to manage complex industrial processes. Unlike centralized systems, a DCS distribates control functions across multiple modules, enhancing reliability and performance. It is essential in large continuous-process industries such as oil refineries, power generation plants, chemical manufacturing facilities, and paper mills—where high precision, operational safety, and scalability are critical.


How Does a Distributed Control System Work?

A DCS integrates several key components that work in unison to monitor and control industrial operations in real time. Here’s a breakdown of its core elements:

1️⃣ Controllers (The “Brain”)

Controllers process input data from sensors using predefined logic and algorithms. They send output commands to actuators to maintain process variables within desired limits, ensuring stable and efficient operation.

2️⃣ Sensors (The “Eyes and Ears”)

Sensors measure vital process parameters—including temperature, pressure, flow rate, and level—and provide continuous real-time data to the controllers.

3️⃣ Actuators (The “Muscles”)

Actuators carry out physical adjustments based on commands from the controllers. Common actions include opening or closing valves, starting or stopping motors, and regulating equipment.

4️⃣ Operator Stations (HMI – Human-Machine Interface)

These stations provide a graphical user interface (GUI) that allows operators to visualize the entire process, adjust setpoints, respond to alarms, and optimize performance.

5️⃣ Communication Network (The “Nervous System”)

A high-speed data network connects all components of the DCS, enabling seamless communication and coordination across different areas of a facility, even over large distances.


Key Advantages of Using a Distributed Control System

  • Decentralized Architecture: By distributing control tasks, a DCS minimizes the impact of a single point of failure, increasing system resilience.

  • Scalability and Flexibility: It allows easy expansion or modification of control loops and processes without disrupting existing operations.

  • High Availability and Redundancy: Built-in redundancy in controllers, networks, and power supplies ensures uninterrupted operation, essential for critical processes.

  • Enhanced Process Efficiency: Optimizes control loops, reduces energy consumption, improves product quality, and decreases operational waste.

  • Integrated Data Management: Provides real-time analytics, historical trending, and reporting capabilities for better decision-making.


DCS vs. PLC vs. SCADA: What’s the Difference?

While DCS, PLC (Programmable Logic Controller), and SCADA (Supervisory Control and Data Acquisition) systems are all used in industrial automation, they serve different purposes:

  • DCS is ideal for complex processes requiring high reliability and coordinated control over a large area.

  • PLC is typically used for discrete control tasks such as assembly lines or machinery.

  • SCADA focuses on supervisory-level monitoring and data gathering across geographically dispersed assets.

In many modern installations, DCS and SCADA functionalities are integrated to leverage the strengths of both systems.


Applications of Distributed Control Systems

DCS technology is widely applied in industries such as:

  • Oil & Gas Refining

  • Power Generation

  • Chemical and Pharmaceutical Manufacturing

  • Water and Wastewater Treatment

  • Food and Beverage Processing


Conclusion

A Distributed Control System (DCS) offers a robust, scalable, and efficient solution for managing complex industrial processes. Its distributed nature not only enhances reliability and safety but also supports continuous operational improvement through integrated monitoring and control. Industries relying on precision, safety, and uptime continue to adopt and evolve DCS technology for smarter automation.


Optimization Notes:

  • ✅ Target keywords included: Distributed Control System, DCS, industrial automation, process control, sensors and actuators, HMI, SCADA vs. DCS.

  • ✅ Structured with clear headings and bullet points for readability.

  • ✅ Content is comprehensive and answers likely user queries.

  • ✅ Includes related terms like PLC and SCADA for context and SEO relevance.

GE Company Introduction

General Electric Company (GE) is a renowned multinational conglomerate with diversified businesses spanning energy, aviation, healthcare, renewable energy, and digital industries. Below are its key details:

1. Company Overview

  • Founded: 1892 (merger of Edison Electric Light Company and Thomson-Houston Electric Company)
  • Headquarters: Boston, Massachusetts, USA
  • Founders: Thomas Edison (technical pioneer), Charles Coffin (business integrator)
  • Current CEO: Larry Culp (since 2018)
  • Market Cap: ~$120 billion (2023 data, adjusted after spin-offs)

2. Core Business Segments

After strategic restructuring, GE now focuses on three main sectors:

  • Aviation (GE Aerospace)
    A global leader in aircraft engines and systems, including CFM International’s (joint venture with Safran) LEAP engines.
  • Healthcare (GE HealthCare)
    Spun off in 2023, specializing in medical imaging, ultrasound, and life care equipment (e.g., CT, MRI machines).
  • Energy Transition (GE Vernova)
    Launched in 2024, combining renewable energy (wind, hydro), gas power, and grid solutions.

3. Historical Milestones

  • Early 1900s: Pioneered electrification, inventing the first commercial incandescent lamp and X-ray machine.
  • 1970s: Entered aviation with the GE90 jet engine.
  • Post-2008: Restructured after the financial crisis, divesting GE Capital.
  • 2015-2020: Pushed digital transformation with the Predix industrial IoT platform.
  • 2020s: Spun off non-core assets (e.g., appliances, biopharma) to focus on advanced manufacturing.

4. Presence in China

Since 1906, GE has contributed to projects like the Three Gorges Dam and COMAC C919, with multiple R&D and manufacturing sites (e.g., Beijing, Shanghai, Wuxi).

5. Recent Developments (2023-2024)

  • Completed spin-offs of GE HealthCare and GE Vernova, leaving GE Aerospace as the remaining public entity.
  • Accelerated sustainable tech R&D, including hydrogen-powered turbines and hybrid-electric aircraft engines.

6. Corporate Culture & Legacy

  • Slogan“Imagination at Work”
  • Achievements: Holds numerous Nobel-level innovations and consistently ranks in the FortuneGlobal 500.

Through continuous transformation, GE aims to lead in low-carbon and high-tech industrial solutions.

Customers reviews

There are no reviews yet.

Be the first to review “GE MPU55 high-performance”

Your email address will not be published. Required fields are marked *

Search for products

Back to Top
Product has been added to your cart